Given an array nums of _n_ integers and an integer target, are there elements _a_, _b_, _c_, and _d_ in nums such that _a_ + _b_ + _c_ + _d_ = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
The solution set must not contain duplicate quadruplets.
Example:
1 2 3 4 5 6 7 8
Given array nums = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]
classSolution(object): deffourSum(self, nums, target): results = [] # NSum方法 deffindNsum(nums, target, N, result, results): # 对N进行判断,能否进行NSum操作 if len(nums) < N or N < 2or target < nums[0]*N or target > nums[-1]*N: # early termination return # N为2时前后两端循环求 if N == 2: # two pointers solve sorted 2-sum problem l,r = 0,len(nums)-1 while l < r: s = nums[l] + nums[r] if s == target: results.append(result + [nums[l], nums[r]]) l += 1 while l < r and nums[l] == nums[l-1]: l += 1 elif s < target: l += 1 else: r -= 1 # N>2 else: # recursively reduce N # 第i个数拿出来,将剩余的数进行(N-1)Sum,N>3时迭代循环 for i in range(len(nums)-N+1): if i == 0or (i > 0and nums[i-1] != nums[i]): findNsum(nums[i+1:], target-nums[i], N-1, result+[nums[i]], results)