95. Unique Binary Search Trees II

2019-07-28

95. Unique Binary Search Trees II

Given an integer _n_, generate all structurally unique BST’s (binary search trees) that store values 1 … _n_.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:

1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

Code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None

class Solution:
def generateTrees(self, n: int) -> List[TreeNode]:
# trivial case
if n <= 0:
return []

# abstract what magic does and don't try to go down the recursion
# trying to figure out the solution. just assume magic does its job.
# assuming magic does what we aspect, the code below should
# be correct
def magic(left, right):
if left > right:
return [None]
result = []
for i in range(left, right + 1):
for l in magic(left, i - 1):
for r in magic(i + 1, right):
node = TreeNode(i)
node.left = l
node.right = r
result.append(node)
return result if result else [None]

return magic(1, n)
-->